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ABSTRACT 

 
Model predictive control (MPC) has been demonstrated to be a potential method for optimal control applied to 

building energy systems that provides both energy savings and enhanced thermal comfort compared to the 

traditional rule-based controllers (RBC). Nevertheless, an appropriate and correct formulation of the optimization 

problem is necessary to achieve this improved controller performance. One of the key aspects of this formulation 

is the objective/cost function, which usually consists of multiple objectives, typically energy use and thermal 

discomfort. Depending on the objective formulation, the trade-off between energy savings and occupants’ thermal 

comfort will be affected. Furthermore, the objective function should match the final user’s preferences, e.g. a 

“greener” user will prefer to sacrifice some money to reduce the building’s carbon footprint. To this end knowledge 

of the primary energy sources used allows converting energy use into CO2 emissions, which could represent 

another objective to be minimized. When smart meters are available higher economic benefits can be realized by 

including dynamic prices in the objective function. Moreover, some MPC formulations tend to have a non-robust 

(bang-bang) behavior which can be avoided by modifying the objective formulation. Furthermore, thermal ground 

balance (which affects geothermal heat pump performance) can be guaranteed by including a penalization for heat 

injection-extraction imbalance or ground temperature drift in the objective function.  
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1. INTRODUCTION 
 

A clear scientific consensus exists on increased global warming due to anthropogenic sources that will cause 

disastrous effects in Earth’s ecosystems [1]. In order to mitigate the concentration of greenhouse gases (GHG) 

in the atmosphere, one of the latest commitments at an almost global scale is the Paris Agreement [2], which 

aims to limit the global warming effect to 2°C, and to a best of 1.5 °C. However, Kaya identity shows us that 

the level of difficulty of such a task is huge [3].   

 

𝐶𝑂2 =  
𝐶𝑂2

𝑊

𝑊

𝐺𝐷𝑃

𝐺𝐷𝑃

𝑃
 (1) 

 

where CO2 represents the amount of carbon dioxide, W the energy use, GDP the gross domestic product and 

P the population of the sample. Hence, the first term of the identity represents the carbon intensity, the second 

is the energy intensity and the third the GDP per capita. Assuming that the GDP per capita and the population 

are two terms which are not likely to decrease, the task of enhancing decarbonisation of the grid and energy 

efficiency becomes even more challenging.  
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The building sector, which accounts for almost 40% of the overall energy use [4] and one-third of the 

greenhouse gas emissions [5] takes a high share. Furthermore, considering that humans spend 87% of their 

time indoor [6], these energy use and GHG emission reductions have to be tackled without jeopardizing the 

occupants’ thermal comfort, which affects both their health and productivity. 

   

Multiple measures exist to reduce energy use and GHG emissions due to building heating, ventilation and air 

conditioning (HVAC), such as: increasing equipment efficiency, correct equipment sizing and improving 

equipment control. One control methodology that has gained the attention of researchers in the building sector 

over the last decades is Model Predictive Control (MPC), which makes explicit use of a model of the building 

to obtain the HVAC system control signals by solving an optimization problem that minimizes an objective 

function, also known as cost function [7].  

 

1.1 MPC and hybrid GEOTABS buildings  MPC is an optimal controller which uses weather forecast 

and a model of the building (called controller model) to predict the building needs and to optimize the control 

actions accordingly [8]. This control methodology is particularly interesting in (hybrid) GEOTABS buildings 

– i.e., buildings whose heat/cold supply system includes a geothermal heat pump and borefield (GEO) and 

whose emission system involves thermally activating the building system (TABS) by means of concrete core 

activation (CCA) – since MPC is able to anticipate their high thermal inertia and thus harness their storage 

capabilities [9]. Nonetheless, to cope with the slow-reacting nature of TABS and borefields, a fast-reacting 

secondary supply and/or emission system is often installed, leading to the hybrid GEOTABS concept [10]. 

The augmented complexity of such buildings with multiple (interacting) components enforces and motivates 

even more the necessity of MPC. Hence, a correct optimal control problem (OCP) formulation that takes into 

account the different components is of utmost importance to attain a desirable system behavior.  

 

1.2 MPC formulation MPC applied to buildings is usually based on multi-objective optimization, which 

involves two or more objective functions in the OCP formulation. In multi-objective optimization, the terms 

of the objective function are generally conflicting (e.g., energy use of the building and thermal discomfort of 

the occupants) and they are often adjusted with weighting factors to obtain a summed weighted objective 

function (see Equation ((2)) . Thus, weighting factors implicitly give more priority to either the one or the 

other term and their adjustment becomes one of the important ingredients to achieve appropriate results. 

However, other approaches than weighting factors exist, such as lexicographic MPC, where one of the 

objectives is optimized in a prioritized way [11]. The formulation is subjected to constraints (Equation (3)), 

typically related to thermal comfort requirements and power limits of the components. 

 

𝐽 =  ∑ 𝐽𝑖

𝑘≥2

𝑖=1

 =  𝛼1 𝐽1 +  𝛼2 𝐽2 + ⋯ + 𝛼𝑘𝐽𝑘 (2) 

s.t. 𝐺𝑗  ≤ 0,   𝑗 = 1, 2, 3 … 𝑚   (3) 

 

The cost function minimization can cover everything that can be quantified in a mathematical way within the 

model, hence it is a key feature to obtain the desired results. Energy use and thermal discomfort are the most 

common objectives to be minimized, but other objectives could be optimized as well, such as monetary costs, 

GHG emissions, use of renewable energy sources (RES), flexibility and demand response indicators, etc… 

Furthermore, several indicators exist to measure thermal comfort and indoor environmental quality (IEQ). 

Moreover, in practical implementations, extra terms could be included to improve robustness of the OCP. This 

paper gives a review of building MPC formulations and is structured as follows: Section 2 discusses an OCP 

for users that prefer monetary savings. In contrast, Section 3 approaches the OCP from green users’ point of 

view. Section 4 explains how to handle thermal comfort and IEQ in the MPC formulation. Section 5 analyzes 

how to improve the robustness of the MPC in the OCP formulation. Conclusions and future work are 

summarized in Section 6. 
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2. ECONOMICAL MPC 
 

The current structure of the final electricity price consists of multiple contributions that can be divided in fixed 

items and items related to the amount of energy used. The ratio between these two items depends on various 

factors, among them: voltage level, end consumer, yearly electricity consumption -  the smaller the consumption 

and circuit breaker, the higher the fixed item payments.  

 

Fixed items consist of a payment for reserved capacity based on the current main circuit breaker installed before 

the meter. The items related to the energy used can be split in a regulated part, which covers an electricity tax, the 

monthly fee, electricity transport and distribution fee, and the variable part that represents payment for the actual 

electricity consumption and additional services including fees for using the electricity grid. So in total, the price 

for the electricity commodity can represent up to 30-50% of total costs of electricity. 

 

With the mass implementation of smart meters, it becomes possible for end customers to select from a wider 

variety of electricity commodity payment options. Typically, the flat price or low-high tariff options were used in 

the past (and still today in many countries). Nowadays, it becomes possible to use hourly energy prices or in some 

EU countries even 15-minutes energy prices, which can be obtained from the energy supplier or aggregator 

companies. A wide variety of options exists. 

 

Intra-day wholesale market prices, which change from hour to hour (in some countries every 15 minutes), show 

the highest variability. A comparison with the daily electricity market is represented in Fig. 1. Note that the price 

signals have the same scale, however for the sake of trade secret, the absolute values are not included. 

 

 
 

Fig. 1 Difference between prices on daily market (DM) and intra-day market (IDM). 

 
The (discrete) formulation of the MPC problem is presented by Equation (3). Note that we include the energy use 

term Je only, the comfort term Jc is analyzed in Section 4. The idea behind this formulation is that the heat pump 

(HP) power is controlled based on the electricity price signal. For hybrid GEOTABS buildings, one important 

feature to be included is the possibility of passive cooling (PC). Furthermore, if the secondary production system 

of the building is a traditional oil-, gas- or biomass-fired boiler, the associated cost term must be adapted to include 

the monetary cost associated to the use of oil, gas or wood. These combustibles have also time variant prices and 

are typically stored in storage tanks, however gas is usually supplied by the gas grid. 
 

 

min ∑ Je

N−1

k=0

= min ∑ [cel(k)
Q̇HP(k)

COP(k)
+  cel(k)

Q̇PC(k)

ηPC(k)
+  ∑ cSS(k)i

Q̇SS(k)i

ηSS(k)i
i

]

N−1

k=0

∆t (4) 

s.t. 0 ≤  �̇�𝐻𝑃(𝑘)  ≤ �̇�𝐻𝑃,𝑚𝑎𝑥  (5) 

 0 ≤  �̇�𝑃𝐶(𝑘)  ≤ �̇�𝑃𝐶,𝑚𝑎𝑥  

 0 ≤  �̇�𝑆𝑆(𝑘)𝑖  ≤ �̇�𝑆𝑆,𝑚𝑎𝑥,𝑖  
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The symbol k represents the time-step of the controller. The cost function to be minimized contains a weighted 

sum of the heat and/or cold produced by the different supply systems over the prediction horizon of length N. The 

weighting factor is composed of the supply system efficiency and the cost of the energy vector used c, which 

corresponds to the price signal forecast obtained from the different suppliers. The COP is the coefficient of 

performance of the HP and it is a time varying parameter that depends on various quantities, but in this study we 

assume only dependency on ambient temperature. Notice that if the heat pump is reversible, the COP would be 

substituted by the EER when operating in cooling mode. The second term refers to the passive cooling mode, of 

which the efficiency depends mainly on the temperature of the soil. If passive cooling is continuously applied, the 

temperature of the soil will increase to a point where passive cooling is no longer possible. The last term includes 

the sum of all secondary supply systems in the building, if more than one. All these terms are subjected to power 

limiting constraints (Equation (5)), depending on the component being used. 

 

2.1 Demand response Power from RES is highly variable and unpredictable, which can lead to unforeseen 

peaks that may cause instability and congestion of the electricity grid, ultimately leading to RES curtailment. 

Integration of RES into the electrical distribution grid comes thus along with higher requirements on control 

of the supply side. As the amount of electricity produced from RES has been growing significantly in EU in 

recent years, it becomes evident that the electricity grid stability cannot be achieved only by appropriate control 

on the production side, however active participation of end electricity consumers is also required. The active 

participation is usually achieved by so called demand-side management (DSM) that includes both demand 

response (DR) and energy efficiency. The reasons for actions taken by DSM are versatile, namely: i) avoiding 

RES power curtailment, ii) maximizing auto consumption, iii) minimizing procurement cost of electricity, iv) 

minimizing imbalance costs or cost of ancillary services…  

 

The proposed economical MPC improves stability of the electricity grid as the system uses electricity mainly 

when there is a power surplus in the grid (which leads to lower costs). As such the energy is delivered in a 

cost-optimal way within both time and availability in the grid. Moreover, while the MPC drives the customer 

to use primarily the cheapest energy on the market, the provider saves money by having information about the 

amount of required energy during the next period at hand. If the grid operator asks to limit the electricity use, 

one way to proceed would be to include a variable constraint for the sum of the maximum power of the 

electricity-based supply systems. The MPC would then use the aforementioned predictions to shift the load to 

harness the thermal mass of the building. Demand response programs can earn back up to 15% of the electricity 

bill [12]. To exploit this potential demand response systems (DRS) should be set up  to: i) remotely control 

electrical loads and ii) effectively use batteries and thermal energy storage. Heat pumps can play an important 

role in this context as they can be controlled in order to achieve load shifting or peak shaving. The energy 

storage capabilities of GEOTABS buildings make them important players. Furthermore, non-electrical based 

secondary systems available in hybrid GEOTABS buildings present an extra degree of freedom. 

 

 

3. MPC MINIMIZING GHG EMISSIONS  
 

The price profile does not necessarily coincide with the GHG emissions profile, as shown by Fig. 2a. While the 

former is dependent mainly on the electricity supply and demand, the GHG emission factor varies with the 

generation systems active at the moment considered. In Fig. 2b we can see that the peaks in the electricity 

generation (green) are approximately the same, in contrast to what happens in the CO2 emissions profile (orange 

in Fig. 2a). On this particular case, this was caused due to a major availability of wind energy on the 25th of January. 

Thus, minimization of the operational costs of heating and cooling systems does not lead automatically to the 

lowest GHG emissions, while the latter is one of the principal objectives of the environmental policies developed 

by the different countries. 

 

The minimal GHG emission MPC formulation is similar to the economic MPC formulation with time varying 

electricity prices, but the prices are replaced by emission factors e that can be provided or estimated through 
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generation schedules by the grid operators (e.g. Elia in Belgium, Red Eléctrica Española in Spain or ČEPS in 

Czech Republic). These emission factors can change the way a hybrid GEOTABS building anticipates the 

disturbances and harnesses the thermal inertia of the building and the borefield. Several setups are possible, which 

differ in the complexity of the formulation.  

 

 
 

Fig. 2 (a) Comparison between electricity prices (regulated market) and CO2 emissions associated to electricity 

generation and (b) electricity generation between 24/01/2018 and 25/01/2018 in Spain. Data extracted from 

[13].  

 

min ∑ Je = min ∑ [eCO2,el(k)
Q̇HP(k)

COP(k)
+  eCO2,el(k)

Q̇PC(k)

ηPC(k)
+  ∑ eCO2,SS(k)i

Q̇SS(k)i

ηSS(k)i
i

] ∆t

N−1

k=0

N−1

k=0

 (6) 

s.t. 0 ≤  �̇�𝐻𝑃(𝑘)  ≤ �̇�𝐻𝑃,𝑚𝑎𝑥  (7) 

 0 ≤  �̇�𝑃𝐶(𝑘)  ≤ �̇�𝑃𝐶,𝑚𝑎𝑥  

 0 ≤  �̇�𝑆𝑆(𝑘)𝑖  ≤ �̇�𝑆𝑆,𝑚𝑎𝑥,𝑖  

 

3.1 Building supplied by green energy  In this case, the building owner or tenants have a contract with an 

electricity supplier who guarantees that electricity will be supplied from RES (PV, wind farms, water power plants, 

etc…). In this case, there is nothing to optimize because RES has zero GHG emission. 

 

3.2 Building without local RES, no green energy from grid  Here we consider the case where the 

electricity supplier delivers electricity from the grid without the guarantee that it originates from RES, and the 

building has no local electricity production from RES. Then it is important to take into account the emission 

factors. In general, the emission factors for the specific location are time varying – e.g., the actual value of the 

emission factor will differ between summer and winter if a lot of PV electricity is injected in the grid.  

 

3.3 Building with local RES, no green energy from grid  This case has the highest complexity, since it 

is important to take into account both the forecast of other electricity consumers and the electricity production by 

local RES (PV, wind, etc…). If the local RES produce more electricity than needed by the building (heat pump 

and other consumptions), then the carbon footprint is zero. If the production of local RES is not sufficient, then 

some electricity must be obtained from the grid and the correct emission factor has to be taken into account.  

Fig. 3 depicts the cost function for optimization. Note that this type of cost functions can be formulated and 

optimized with the aid of slack variables. 
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Fig. 3 Cost function trend: f1(k) = 
𝑄𝐻𝑃(𝑘)

𝐶𝑂𝑃(𝑘)
 + Pother(k) – Plocal_prod(k), f2 cost function, for f1(k) ≥ 0, f2(k) = 

eCO2(k)f1(k), otherwise f2(k) = 0  

 

3.4 Building with conventional fossil energy source heating systems  If the secondary system of the 

building is a traditional oil- or gas-fired boiler, an additional term should be added to the objective function that 

takes into account the GHG emissions of oil or gas combustion. Typical values for these emission systems can be 

found at Table 1. For biomass boilers it is assumed that the net balance of CO2 emission is zero.  

 

Table 1 CO2 emission factors for different combustibles [14] 

Combustible CO2 emission, low CP [kg/kWh] CO2 emission, high CP [kg/kWh] 

Natural Gas 0.181 0.200 

Fuel oil 0.247 0.263 

Wood 0 0 

 

 

4. THERMAL COMFORT AND INDOOR ENVIRONMENTAL QUALITY 
 

The main purpose of designing heating, cooling and ventilation systems in buildings is to achieve a minimum level 

of thermal comfort and indoor air quality (IAQ) for the occupants. Enhanced indoor environmental quality (IEQ) 

can improve occupants productivity by 5 to 10% [15], which may be a significant cost saving especially in office 

buildings. Furthermore, elderly people prefer warmer thermal conditions [16], a factor to take into account in 

elderly care homes.  Thus, it is clear that this aspect has to be included somehow in the OCP. In sections 2 and 3, 

we have analyzed the term corresponding to energy use Je without taking into account thermal comfort Jc. Some 

MPC formulations [17] have included the latter as temperature bounds within hard constraints, however this 

formulation could lead to unfeasibility issues, which need to be tackled by the introduction of slack variables. 

Moreover, if slack variables are used to track a determined set-point, this would limit the freedom of the MPC and 

may result in higher energy use [18]. Therefore, temperature bounds are desirable combined with a penalization 

for crossing the bounds. 

 

Several thermal comfort standards exist to define the upper and lower temperature (and other comfort parameters) 

bounds of a building, such as ISO7730, EN15251, ASHRAE55 and ISSO74, extensively discussed by Sourbron 

and Helsen [19]. These models are either based on thermal comfort bounds or on the PMV model of Fanger [20]. 

However, the non-linear nature of the latter makes it computationally more expensive, leading to the use of 

simplified versions of this model [21]. These are not the only thermal comfort models found in the literature,  for 

more details the reader is referred to Enescu [22]. Some studies recommend an adaptive thermal model that 

involves acclimation of people, which improves people’s health by increasing their thermo-neutral zone [23].  
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Moreover, appropriate thermal comfort does not ensure a good IEQ since this depends on additional factors, such 

as indoor air quality (IAQ), lighting quality, visual and acoustic comfort… We focus on IAQ to improve the overall 

IEQ, which is usually enhanced by ventilation strategies. New evidence exists that mechanical ventilation systems 

lead to an overall improvement of the IAQ and reduction of reported comfort and health related problems [24]. If 

the building is equipped with an air handling unit and CO2 sensors, efficient control can contribute to enhanced 

IAQ. However, MPC needs an occupancy model to predict the ventilation needs,  e.g. based on statistical data or 

on available measurements [25]. These occupancy models are also important to predict thermal loads and thus 

improve thermal comfort (in the end, humans are walking radiators), and when correctly implemented they can 

further save up to 30% energy [26]. The proposed formulation includes therefore a slack term for thermal comfort 

sT and another for IAQ comfort sCO2. αT and αCO2 are the weighting factors that represent the “price” the final user 

is willing to pay to have more or less comfort, lb and ub represent the lower and upper bound for the chosen thermal 

comfort model and CO2 levels. 

 

 

min ∑ J𝑐

N−1

k=0

= min ∑[𝛼𝑇(𝑘) 𝑠𝑇(𝑘) +  𝛼𝐶𝑂2(𝑘)𝑠𝐶𝑂2(𝑘)]

N−1

k=0

∆t (8) 

s.t. 𝑙𝑏,𝑇 +  𝑠𝑇  ≤ 𝑇𝑧𝑜𝑛𝑒𝑠 ≤  𝑢𝑏,𝑇 +  𝑠𝑇 (9) 

 𝑙𝑏,𝐶𝑂2 +  𝑠𝐶𝑂2  ≤ 𝐶𝑂2𝑧𝑜𝑛𝑒𝑠 ≤  𝑢𝑏,𝐶𝑂2 +  𝑠𝐶𝑂2  

 

The hybrid GEOTABS concept can improve both thermal comfort and IEQ. TABS can provide an ideal vertical 

temperature gradient, and due to the small temperature differences between the surfaces and the space, the system 

can benefit from the self-regulating effect and provide a stable thermal environment [27]. Buildings with 

mechanical ventilation units can use these as the fast-reacting secondary system by pre-heating or pre-cooling the 

air before being injected in the building zones. The presence of TABS significantly reduces the size of the 

ventilation system (and corresponding fan power) to provide acceptable IAQ or the necessary heating or cooling 

at peak times. As a consequence, IEQ is also improved: less draught and noise from fans, no visible heating/cooling 

devices… 

 

 

5. ADDITIONAL ROBUSTNESS 
 

Perfect predictions would lead to a smooth behavior of the MPC. However, in real implementations MPC has 

to deal with several uncertainties, i.e. accuracy of predictions, measurement errors, model mismatch… 

Additional features to improve MPC robustness can be included in the OCP formulation. One example has 

already been mentioned in section 4: thermal comfort bounds are included as slack variables in the objective 

function to avoid unfeasibility problems.  

 

Another problem that can appear is oscillatory behavior. If the constraints are not very tight, the control actions 

result into either idle (no energy) or deadbeat control (full power), thus in control actions that need post-

processing. This behavior causes issues, especially in closed-loop performance, where the control actions can 

have a very oscillatory behavior. These oscillations can be eliminated by introducing constraints in the rate of 

change of the delivered energy to the building [18]. The introduced constraints should be soft constraints to 

avoid problems with cases were full power is really required (e.g., after a long holiday period). Terms such as 

minimizing the maximum rate of change or the curvature of the delivered inputs can be included in the 

objective function. 

 

MPC predicts over a chosen prediction horizon, which cannot be taken too long (maximum in the order of 

weeks) since this would lead to a too high number of optimization variables. As a consequence it is difficult 

to incorporate in the MPC the effect of seasonal energy storage in the borefield. However, to avoid thermal 

depletion of the borefield, a thermal balance in the ground should be ensured on the long term. To this end, 

some authors [9] have included a long-term cost in the objective function, that penalizes the use of the borefield 
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at specific moments thereby inviting the system to use the secondary production unit. The thermal conductivity 

of the ground plays a crucial role in this thermal ground balance. For grounds with low thermal conductivity 

additional exploitation of seasonal thermal energy storage in the borefield may become economically 

beneficial. This switching point depends on the efficiency of the secondary (heat/cold) production units in 

relation to the heat pump and passive cooling COP. Storing energy always leads to losses [28]. 

 

Design of hybrid GEOTABS systems is often based on static methods (described in standards). However both 

TABS and borefield are usually in transient states due to their large thermal inertia. Therefore, using a dynamic 

controller model in the MPC is very important. 
 

 

6. CONCLUSIONS AND FUTURE RESEARCH 
 

Several OCP formulations have been proposed based on the hybrid GEOTABS buildings properties and 

literature review. Most of the formulations include multi-objective optimization based on the trade-off between 

energy use and thermal comfort. However, the way these terms are weighted is diverse and should be adapted 

to the final user needs. Energy use can be converted to energy cost by using price profiles or converted to GHG 

emissions by using CO2 generation profiles. Thermal comfort can be adapted to satisfy the user’s subjective 

comfort and enhance overall IEQ. Robustness of the MPC can also be increased by incorporating additional 

terms that remove oscillatory behavior and ensure thermal balance of the ground.  

 

Future research includes testing the proposed formulations in virtual test beds and analyzing the influence of 

diverse parameters – e.g., the prediction horizon, cost profile – to check how MPC optimizes and harnesses 

the buffering capabilities of the hybrid GEOTABS buildings. Diverse thermal comfort models will also be 

tested to find out which one fits best to the hybrid GEOTABS concept. Robustness terms will be included to 

mitigate unwanted oscillations and guarantee thermal balance of the ground. 
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