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Abstract

A large potential exists to improve current practice of HVAC design and operation of buildings with respect to
occupant comfort, energy use or energy cost, and investment costs for design and construction. More specifi-
cally, design and control processes can be improved through the use of contemporary optimisation algorithms
such as Model Predictive Control (MPC). This paper presents a methodology for integrated optimal control
and design of buildings using MPC. A possible implementation is presented and a case study application illus-
trates potential cost savings for a medium sized (10 000 m2) office building. Opportunities for future work are
outlined.
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1. Introduction
Building Heating, Ventilation and Air Conditioning (HVAC) equipment accounts for about 20 % of Europe’s
primary energy use [1] and the associated CO2 emissions have a negative impact on our climate. The use
of contemporary technology for optimal design and control of building systems can result in considerably
reduced CO2 emissions, while also achieving cost savings and increased thermal comfort. Many research
studies therefore develop methodologies for optimising the control of building HVAC equipment using Model
Predictive Control [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], or develop methodologies for optimising the sizing or other
design options of the building energy systems or the building envelope [12].
These studies however do not take into account the interaction between the building system design and the
control, which can be important. The building system design determines what HVAC systems are present and
thus what control actions are physically possible, while the building envelope design determines what heat or
cooling loads exist and thus what control actions are required. The operational costs associated with a spe-
cific design thus depend directly on the design, but also on how the controller operates the building given the
possible control actions. For complex buildings, the development of well-tuned building controllers is a labour-
intensive process such that building controllers are often idealised during the design process. This can lead to a
sub-optimal, conservative design, where the systems are oversized, or an inadequate design where the system is
undersized. A systematic design methodology for complex buildings should thus take into account the building
controller. We therefore present an integrated optimal control and design methodology for buildings.

This paper summarises work from the PhD thesis of Jorissen [13], which is here complemented with an ex-
tended discussion of future work. Section 2 presents the methodology for integrated optimal control and design
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and its implementation. Section 3 applies the methodology to a case study, the Solarwind office building. Sec-
tion 4 discusses the results of this proof-of-concept. Section 5 elaborates on threats and opportunities for future
work. Conclusions are formulated in Section 6.

2. Methodology and Implementation
Simultaneous optimisation of the operational and investment cost of both the design and the control variables
of a building would lead to computationally expensive optimisation problems for two reasons. Firstly, the op-
timisation horizon has to be long (typically one year), to reflect the fact that the design variable values stay
the same throughout the control horizon of interest. Secondly, there can be many control variables. Moreover,
gradient-based optimisation algorithms may converge to a local minimum of the non-convex design problem.
Heuristic optimisation algorithms that are usually able to cope better with non-convex optimisation problems
may be intractable due to the large number of optimisation variables. Therefore we propose a nested optimisa-
tion loop that consists of an outer and an inner optimisation. The outer optimisation loop determines the design
variable values and the investment cost using some heuristic optimisation algorithm. For these design variable
values, a model predictive controller is generated, the inner loop, which evaluates the operational cost of the
design using a computationally efficient gradient-based optimisation algorithm.

For the implementation of this methodology we rely on the equation-based modelling language Modelica [14],
the Building Energy Simulation (BES) Modelica library IDEAS [15], which is an extension of the IBPSA (An-
nex 60) library [16, 17] and on TACO, a Toolchain for Automated Control and Optimisation of buildings [18].
We use Modelica since this equation-based language decouples model equations and methods for solving them,
which allows the use of dedicated solvers. In this case an efficient optimisation solver is used, as implemented
by TACO [18]. It exploits the linear nature [19] of the building envelope model dynamics and automatically
generates an MPC with computationally efficient code using CasADi [20], which is optimised using IPOPT
[21].
The practical implementation of our approach is now discussed in more detail. For this implementation we
rely on Modelica-based concepts as much as possible. For usability reasons, we deliberately avoid spreading
the design problem definition across multiple files and programming languages. The user thus interacts with a
consistently defined Modelica model as much as possible.

2.1. Simulation model development
A first step is to develop a Modelica simulation model for the building of interest. Preferably, the IDEAS library
is used since it has been configured [19] such that it is compatible with TACO. The building model should
include HVAC equipment and the building envelope. Building system controllers should not be included.
Internal heat gain models can be included, depending on how the user wants to set up the design problem.

2.2. Optimisation model development
A second Modelica model has to be developed that serves as a controller model for the MPC. The building en-
velope and HVAC models can be identical to the simulation model, insofar that the used Modelica specification
constructs are supported by TACO. E.g. integer optimisation variables are not yet supported and algorithm sec-
tions are not supported either. Otherwise, the model must be modified such that it complies with the supported
parts of the Modelica specification. Furthermore, the building HVAC models should be configured such that
they are stationary by removing the optional model dynamics.

2.3. Model parametrisation
Next, the simulation and optimisation models are parametrised such that a change in design variables affects the
model equations. This parametrisation has to be done consistently for the simulation and optimisation models,
insofar that they do not already extend the same code, in which case the code is automatically consistent.
Next, we create a Modelica record that summarises the design degrees of freedom. The record contains a
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set of sub-records that each correspond to a Boolean, Integer or Real design variable. These sub-records
contain fields that define the investment cost ci, annual maintenance cost cm, lifetime l and replacement cost
cr. The maintenance cost and replacement cost are defined as a fraction of the investment cost. For real
design variables an upper and lower bound are specified. For integer variables, all allowed integer values must
be specified. This record is instantiated in the simulation and optimisation models and its values are used to
compute the earlier declared design variables of the model.
Using these cost values, each record automatically computes the Net Present Value (NPV) of the investment,
maintenance and replacement as

rc =
d−1∑
j=0

1

(1 + r)j
, (1)

cNPV,i = ci

(
1 + rccm + crfloor

(
d− ε
l

))
, (2)

where d is the depreciation period in years, r is the annual discount rate, rc is a cumulative discount rate, ε is a
small positive number that ensures that the replacement cost is zero when l = d, and floor(·) is a function that
rounds a decimal value to the largest integer value that is smaller than or equal to this decimal value.
The simulation model is used to compute the NPV of the operational costs

cNPV,o = rcce, (3)

where ce is the annual energy cost. Note that this formulation implicitly assumes that energy prices are fixed
throughout the years. Additional costs can be defined by the user.

2.4. Heuristic optimisation algorithm
A multi-objective heuristic optimisation algorithm is implemented using DEAP [22]. The main argument for
using DEAP is its support for the automated parallelisation of its tasks on a computing cluster using SCOOP
[23] and ZeroMQ [24]. The algorithm is based on NSGA-II, which was developed by Deb et al. [25].
Our algorithm automatically parses the design record and identifies how many design variables exist, what
types they have and what upper bounds are defined for their values. The algorithm generates a set of design
values and assigns them to the sub-records. The optimisation model is then translated for this set of design
variables using TACO, after which it is translated by Dymola using the same set of parameters and using the
MPC generated by TACO. Cost functions cNPV,o and cNPV,i are evaluated and saved to a text file that is read by
the heuristic algorithm. This information is used by NSGA-II to choose a new set of design variables. Figure 1
presents a schematic overview of this implementation.

3. Case study

As a demonstration of our methodology, we apply it to Solarwind, a 10 000 m2 highly insulated, GEOTABS 1

office building in Luxembourg. The building model consists of 32 zones of which 24 have individual Concrete
Core Activation (CCA) systems and Variable Air Volumes (VAV) with a heating coil. The model further
includes a borefield, two detailed, validated air handling unit models [26], multiple heat exchangers and four
heat pumps. Valves, pumps, dampers, fans, pipes and ducts are modelled explicitly using pressure-driven flows
such that mass flow rates are computed from a flow network, which was described in detail by Jorissen et al.
[27, 28]. This allows the pump and fan electric power uses to be computed accurately, which can dominate the
building electrical power use. Jorissen [29] validates and describes the model in more detail.

1GEOthermal borefield combined with Thermally Actived Building Systems (TABS)
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Figure 1: Schematic overview of optimal design algorithm. Executables indicated in blue are called by the
DEAP script in this order: TACO, Dymola, Simulation. Files (ovals) with the extension .so are linux shared
libraries. The template contains all models that are common to the simulation and the optimisation model.

Table 1: Summary of design variables, an indication of their type: boolean (B), integer (I), real (R), their
possible values, and investment cost ci. Maintenance cost cm and replacement cost cr are presented as a
fraction of the investment cost. The replacement cost is paid after each lifetime of l years. Aw = 691 m2 is the
total surface area of the window glazing.

Variable Values ci[EUR] cm cr l

AHU type I ∈ {0, 1, 2} 2{45000, 100000, 140000} 0.03 1 30
HP stages I ∈ {2, 4, 6, 8} 11725I/2 + 11952I/8 [30] 0.03 1 20
VAV type B ∈ {0, 1} 24{110, 650} 0.01 1 30
VAV coil B ∈ {0, 1} 24{0, 1600} 0.01 1 30
Glazing type I ∈ {0, 1, 2} Aw{50, 50, 0} 0 0 30

3.1. Design variables
Our methodology is now applied to Solarwind as a proof of concept. Design variables to be optimised are
summarised in Table 1. The presented cost values are based on the work of Picard [30] and from real projects
carried out by Boydens Engineering. We assume that the replacement cost is 100 % of the investment cost. We
choose a depreciation period of d = 30 years and an interest rate of r = 2 %. Investment costs include delivery
and installation. We now discuss the energy system design options in more detail.
Firstly, three air handling unit types are considered. The first type only has heat recovery and a bypass. The
second type has an additional evaporative cooling function. The third type also has an active chiller such that the
third type corresponds to the Menerga Adsolair type 58 unit of Solarwind. Secondly, we provide the option to
reduce the number of heat pumps. This choice is somewhat simplified by optimising the number of heat pump
stages, which is used to limit the maximum thermal power of the heat pump in the MPC. Thirdly, dampers with
a fixed position, or controllable VAVs can be used. Fourthly, the VAV heating coils may or may not be present.
Finally, three types of double or triple glazing can be installed.
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The operational cost ce = pelEel is evaluated by computing the electrical energy cost of a full year, using the
model predictive controller that is generated using TACO. We assume an energy cost of pel = 0.2 EUR/kWh.

3.2. Model modifications for design parameter variations
We now summarise how the design variables are implemented in the simulation and in the optimisation models.
The AHU types are implemented in the simulation model by disabling the IEH and chiller controllers. When
there is no chiller, the pressure drops of the evaporator and condenser are removed. In the optimisation model,
the respective control signals are replaced by zero if the IEH or chiller are not present. The pressure drops
are also removed. The heat pump stages are implemented in the heat pump post-processing by limiting yPI(t)
to the number of stages. In the optimisation model, the thermal power upper bound changes linearly with the
available number of stages. When a damper is used instead of a VAV, the VAV models [28] are reparametrised
using V̇max = V̇min = 10V̇nom. This causes the VAV internal damper to be opened fully. In the optimisation
model, the control variables are replaced by ones. When the VAV heating coils are unused, the heating coil
valve openings are forced to zero and the circulation pump is disabled. For windows that are not oriented
north2, three possible glazing types are selected. The first is the original triple glazing type, GT401 [29]. The
second is the triple glazing type with a lower g-value that is also used for the north façade, GT404 [29]. The
third type is double glazing type Ins2ArGray from the IDEAS library, which has a g-value of about 0.4,
which is in between that of GT401 and GT404, and a U-value of about 1.3 W/m2K.

3.3. Solver configuration
Each design case is computed for a full year that is split up into twelve parts of 30.4 days such that the op-
timisation can be parallelised. Each part starts with the same default initial conditions, which are the same
for all design cases. The required energy use is therefore probably underestimated, but this underestimation is
consistent across all design cases. The results should thus be interpreted as relative trends rather than absolute
numbers.
The design cases are evaluated on two computer systems. The first computer system is a Dell Precision T5810
workstation with Intel Xeon E5-1650 v4 3.6 GHz processor running Ubuntu 16.04 and GCC 4.8.5. The second
computer system consists of four nodes of a computing cluster that each have two Intel Xeon E5-2630 2.3 GHz
processors running Red Hat Enterprise 6.5 and GCC 4.9.2. Dymola 2018 does not natively support running in
the headless3 configuration of the cluster. This can be circumvented by using an X virtual framebuffer, Xvfb.
Xvfb was only installed on four nodes such that we were unable to use the full cluster, which consists of 352
nodes. On both systems we use IPOPT [21] and HSL linear solver ma27 [31]. In our case there exist (only)
144 design options in total, such that we were able to evaluate all design options. A design case evaluation
of Solarwind takes about six hours such that the entire optimisation can take a few weeks. Computation time
however depends on the model complexity and the number of available computers, since the individual design
cases can be evaluated in parallel.

4. Results and discussion
Results are summarised in Figure 2 where all subgraphs depict investment cost versus operational cost. The top
left subgraph shows the results for all possible design variable combinations. The used color scale indicates the
mean annual thermal discomfort per zone. The discomfort is computed relative to the MPC zone temperature
constraints, which constrain the zone temperatures between 21.5 ◦C and 24.5 ◦C. Nights and weekends are
included in the computation. The discomfort scale reaches up to 900 Kh/y, which corresponds to an average
comfort violation of 0.1 K. However, for the near-optimal cases, the discomfort is in the same order of mag-
nitude as the Solarwind design reference case. The cost-optimal result is indicated by the case on top of the

2These already have a different glazing type.
3Without display.
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Figure 2: Summary of design results. The top left subgraph shows the annual mean (per zone) total (cold
and heat) discomfort. Air quality is similar to or better than the MPC reference case that has the design of
Solarwind. The remaining subgraphs show more detailed information for each design variable.
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black line, which connects all points that have a combined investment and operational cost of EUR 261 852.
See Appendix B of [13] for more detailed information for each case. This subgraph reveals only little structure
in the results. Two vertical bands can be seen on the left and a larger blob of points is visible on the right.
The structure of the results is better illustrated by the other five subgraphs, which each focus on one of the five
design variables. For each design variable, the different possible design values are indicated using different
colors. Moreover, for each subgraph we collect the design cases in groups for which each element has the same
design variable values, except for the design variable on which is focussed in that subgraph. These groups are
connected using black lines. These lines thus illustrate the sensitivity of the costs with respect to a single design
variable. For a more detailed discussion of these results we refer the reader to Section 11.4 of [13].
The overall optimum is the design case that uses 1) simple AHUs without adiabatic or active cooling, 2) 2 heat
pump stages, 3) double glazing, 4) VAVs, and 5) no heating coil. This case has an operational cost of EUR 61
162 and an investment cost of EUR 200 690 This is the design case with the lowest investment cost possible,
except for the VAVs, which cost slightly more than dampers.
Compared to the original Solarwind design, the optimum design has an investment cost of EUR 200 690 instead
of EUR 699 444 and an operational cost of EUR 61 162 instead of EUR 50 293 The total NPV for the considered
design variables, which does not include the borefield, hence decreases by 65 % (EUR 487 885). This result
shows that there is a strong economic case to be made for an integrated optimal control and design analysis
for the design of buildings. This of course implies that MPC must be used in practice, for which an additional
financial incentive exists: implementing MPC instead of RBC would by itself lead to additional operational
cost savings in the order of EUR 218 000 over a period of 30 years, assuming that energy prices stay fixed at
0.2 EUR/kWh [32]. The numbers reported here are of course not applicable to every case, and they should be
interpreted with care, as explained further in Section 5. Most notably, a thermal imbalance exists, which causes
the borefield temperature to rise. Consequently, passive cooling may no longer be possible after several years.
Future MPC versions can be designed to avoid this problem. In addition to economic incentives, we expect that
MPC can lead to better thermal comfort, more systematic controller performance and other advantages such as
reduced commissioning costs. Better thermal comfort in turn leads to higher productivity of the building users.

5. Threats and opportunities for future work
While the proof of concept leads to the conclusion that an economic potential clearly exists, our analysis is too
simplified in its current form to be directly used in practice. Firstly, we neglect the impact of the thermal im-
balance of the borefield, which means that the proposed design may not be able to supply the required cooling
load for the entire period of 30 years. This could be resolved by initialising the borefield at a higher initial tem-
perature, to reflect the heating caused over multiple years of dissipating heat into the borefield. Secondly, we
use meteorological data for a single year, while extremely hot or cold years could be included in the analysis,
especially with the onset of climate change. Thirdly, the building is almost completely occupied during the
analysed period. In practice, this may not always be the case such that internal heat gains are lower, which can
cause increased heating requirements. Having only two heat pump stages may then not suffice and a (low-cost)
backup system could be included as a design option. Due to this third and fourth point, it would make sense to
complement the design optimisation with a pass/fail type of test that checks whether the building systems are
sized adequately to heat, cool and ventilate the building to a user-defined set of design conditions. Fourthly, a
mismatch exists between the modelled behaviour of the building, and its actual behaviour. This must be taken
into account when sizing the building thermal systems. Finally, two separate models must be developed. It
would be more convenient if only a single model has to be developed by the users, which is then used both
for simulation and optimisation purposes. IBPSA project 1 is working on a Modelica library for MPC, which
could make this possible.

In addition to these threats, opportunities exist. Firstly, we did not yet optimise the size of the borefield, which
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has a large investment cost. Secondly, the building insulation thickness, window sizes or other elements of
the building envelope can be optimised. The height of the photovoltaic overhangs or other shading types can
also be optimised, which is essentially a degree of freedom that costs nothing. Thirdly, the location of the
embedded pipes in the CCA can be changed, or multiple embedded pipes can be used at different depths in the
concrete, which can increase the reaction speed of the CCA. Fourthly, the flexibility of MPC can be exploited
by developing new hydronic configurations. E.g., thermal storage tanks can be added that can store residual
heat or cold for later use in the building. Or, the solar thermal collectors can be used as a heat dissipater at
night or during winter to regenerate the borefield for cooling dominated cases. Finally, our work does not
consider time-dependent pricing and we do not consider the electrical power generation of photovoltaic panels.
With the onset of smart grids, the building design could use existing or new thermal storage tanks to store low
temperature heat, and/or convert this low temperature heat into high temperature heat when electrical energy
prices are low. Similarly, the borefield and other components could be coupled to a district heating network
to compensate the thermal imbalance if financial incentives exist to inject heat on the network using the heat
pumps.

While the presented work has been designed with practical usability in mind, implementing (as opposed to
using) the methodology requires a lot of expertise, especially when using a computing cluster to parallelise
the computations. Future work could therefore focus on implementing a web-interface that allows the user to
upload an optimisation problem, possibly complemented with additional pass/fail tests. The optimisations are
then evaluated on a computing cluster and results are returned in several formats, e.g. as raw results or in a
format similar to Figure 2.

Heuristic optimisation algorithms could be design to exploit the structure that is clearly illustrated in Figure 2.
This is explained in more detail in Section 11.4.2 of [13]. The computed investment and operational costs are
included in Appendix B of [13] such that these data can be used to test various types of heuristic optimisation
algorithms and settings without performing the optimisations required for evaluating these costs.

6. Conclusion
This paper presents a methodology for integrated optimal control and design of buildings using Modelica
simulation models and TACO. The user first creates a simulation and optimisation model of a building and
declares all design variables and parameters that are required for evaluating the Net Present Value (NPV) of
the investment (e.g. the investment and replacement costs). Our implementation automatically identifies the
design variables of the Modelica model and a heuristic optimisation algorithm generates design cases for which
the operational and investment cost are computed using 1) an MPC generated by TACO using the optimisation
model and 2) the simulation model.
This methodology is applied to a case study, the Solarwind office building. Five design variables are defined and
all 144 possible design cases are evaluated by computing the operational cost for a full year. The results show
that the investment cost dominates the total NPV of the investment and that the operational cost is insensitive
to many design variables, such that the investment cost can be reduced significantly by changing the building
design. This results in cost savings of EUR 487 885 for the Solarwind case over 30 years.
These results show that there exists, at least for some buildings, a large potential to reduce the investment costs
when using MPC as part of the design process. Future work is required to unlock this potential in practice.
Moreover, the building operation can be optimised towards other objectives, such as CO2 emissions, share of
renewable energy sources, flexibility, ... as long as these can be defined using Modelica equations.
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